
1

1

A Maxima Guide for Calculus Students

c©January 2, 2004 by
Moses Glasner

e-mail: glasner AT math DOT psu DOT edu
Address:Department of Mathematics

PSU
University Park, PA 16802

January 2, 2004

1See Additional Docs at the Maxima URL: http://maxima.sourceforge.net/docs.shtml
Also see: http://www.math.psu.edu/glasner/Max doc

1
Scientific Calculator

By default Maxima comes with its own graphical user interface, called Xmaxima.
Those people who are familiar with Emacs may be much more comfortable in us-
ing Maxima under the Emacs maxima-mode. This combined with the auctex-mode
provides for a very powerful environment for combining computations together with
the LATEXcomposition of a document. For very brief usage not requiring extensive
interaction, Maxima can be run from a console, such as Xterm under Linux, or DOS
prompt under Windows. A more advanced GUI for automating LATEXdocument pro-
duction, called TeXmacs, can run Maxima and gives a very polished appearance to
the output.

We assume that you have loaded Maxima onto your computer and can run
it by clicking on a Maxima shortcut or Start menu item. After starting maxima
you can scroll through the Primer that appears on the bottom half of the window
in which Maxima runs. Also any text appearing there can be copied and pasted
as a Maxima instruction. The entire Maxima manual is available in this buffer by
clicking on help. Maxima also gives online help by click on Maxima help in the Help
menu. The font can be adjusted somewhat by selecting Fonts in the Options menu.
Maxima also provides help from the command line in response to the commands
describe(something) or example(something). Maxima may ask additional questions
before responding to these help requests and the response should be ended with a
semicolon ; and then pressing the ENTER key.

Maxima can be used in an interactive manner and a batch processsing manner.
We will only discuss the interactive manner here using the Xmaxima GUI. Once
started instructions for Maxima are entered in the top buffer. Each instruction must
end with a semicolon or a dollar sign followed by a press on the Enter key. A semicolon
is used if Maxima is to print the output to the screen and dollar sign if the result of
the calculation is to be stored internally and used in a subsequent step but not to be
displayed on the screen.

3

Maxima Guide

When Maxima is ready to process an instruction it displays a C followed by an
integer on the screen, for example, (C1). This will be the label assigned to the next
instruction entered. Any entered instruction may be retrieved by just entering this
label at any time up to the point the Maxima session is stopped or restarted. Maxima
assigns a label to the output created by each instruction as well; this begins with a
followed by an integerm for example (D1). This label is assigned whether or not the
display of the output is suppressed by a dollar sign. Or, one can assign a label of
one’s own choosing to any output Maxima produces by putting “my label : ” or at
the beginning of the input which produces the output. For example my 24 :(2+3)∗4
; or my pie : 4*atan(1);. The labels “my 24” and “my pie “ can then be used at any
time to retrieve the value assigned to it.

It is important to remember that Maxima does not distinguish between upper
case and lower case letters. Thus Sin(%Pi) and sIN(%pI) produce identical results.
However, user defined labels are case sensitive. Thus Maxima treats My 24 and
my 24 as different labels.

Since Maxima automatically assigns labels Cn and Dn to input and output, it
is absolutely essential not to use these or cn and dn for any purpose other than
recalling a specific input or output. (Since these labels are Maxima assigned, there is
no case distinction on these labels.)

For example, the instruction

(C1) f(x) := c23x + c24;

(D1) f(x) := c23x + c24

guarantees utter confusion after entering 23 inputs are given in a maxima ses-
sions. Also note that the instruction

(C9) kill(all);

(D0) DONE

destroys all information, including loaded packages, entered in a Maxima session.
If one needs to use the symbol f for some other purpose after entering instruction
(C8) but not destroy all information, then the correct instruction would be

(C1) kill(all);

(D0) DONE

A very simple use of Maxima is an infinite precision scientific calculator. To

4

Section 1
Scientific Calculator

illustrate this, consider the following:

(C1) fpprec: 60;

(D1) 60

(C2) q : sqrt(2);

(D2) SQRT(2)

(C3) 1 + q;

(D3) SQRT(2) + 1

(C4) bfloat(q);

(D4) 1.41421356237309504880168872420969807856967187537694807317668B0

(C5) bfloat(1+q);

(D5) 2.41421356237309504880168872420969807856967187537694807317668B0

The Maxima variable fpprec controls the number of digits Maxima prints to the
screen and the command bfloat(x) asks it to print out a decimal approximation to the
infinite precision value stored in x.

From the above you also see that in order to assign an expression to a label or
variable one needs to type the label, a colon, and then the expression to be assigned.

5

2
Finding Limits with Maxima

Maxima can be very helpful in checking limits of functions. But first one needs to
know how to define funtions for Maxima. It is done with a slight addition; specifically,
the command is a colon followed immediately by an equal sign, as you see in the
following dialogue:

(C6) f(x) := sin(x)/x;

SIN(x)

(D6) f(x) := ------

x

(C7) [f(1), f(2), f(1 + h), f(x + h)];

SIN(2) SIN(h + 1) SIN(x + h)

(D7) [SIN(1), ------, ----------, ----------]

2 h + 1 x + h

and finding limits is easy for Maxima:

(C8) limit(f(x), x, 0);

(D8) 1

(C9) limit((sin(x+h)-sin(x))/h,h,0);

((MTEXT) Is ((%SIN SIMP) $x) positive, negative, or zero?)

positive;

((MTEXT) Is ((%COS SIMP) $x) positive, negative, or zero?)

7

Maxima Guide

positive;

(D9) COS(x)

Note that in the course of the above dialogue Maxima required responses to
two questions. After the reponse, positive, negative. or zero, one needs to type a
semicolon and press the ENTER key.

Maxima can even deal with functions defined by several formulas:

(C10) f(x) := if x > 0 then 1 else -1;

(D10) f(x) := IF x > 0 THEN 1 ELSE - 1

(C11) [f(-%pi/3), f(%pi/3)];

(D11) [- 1, 1]

Maxima can also be used as a graphing calculator. Try the following instruction:

(C12) plot2d(sin(x),[x,0,4*%pi]);

Points = 626

(D12) 0

8

3
Limit of Difference Quotient

Finding the limit of Difference Quotients is a calculation where Maxima can really
be helpful in locating errors. For example, here is a Maxima session finding the limit
of the difference quotient of

√
x− 1.

(C1) f(x) := sqrt(x - 1);

(D1) f(x) := SQRT(x - 1)

(C2) algebraic : true;

(D2) TRUE

(C3) diff_quot :(f(x+h) - f(x))/h;

SQRT(x + h - 1) - SQRT(x - 1)

(D3) -----------------------------

h

(C4) simplified_diff_quot : 1/ratsimp(1/diff_quot);

1

(D4) -----------------------------

SQRT(x + h - 1) + SQRT(x - 1)

(C5) limit(simplified_diff_quot,h,0);

SQRT(x - 1)

(D5) -----------

2 x - 2

(C6) diff(f(x),x);

9

Maxima Guide

1

(D6) -------------

2 SQRT(x - 1)

In the above dialogue you see several new commands. The last instruction
labeled (C6) tells Maxima to just compute the derivative of f(x) as rapidly as it
knows how. It is included only to confirm that the output labeled (D5) is correct.

The command ratsimp tells maxima to simplify. However, Maxima by default
is set to simplify rational functions and has been told to ignore algebraic (radical)
simplifications in order to optimize the other types of simplifications it attempts.
However, when we would like it to also perform algebraic simplifications we add the
instruction algebraic : true;.

If you frequently work with algebraic expressions you may wish to set up an
initialization file which maxima reads everytime it (re)starts. To do this you create a
textfile called maxima-init.mac consisting of the line algebraic : true; and of course
any other instructions you would like Maxima to execute at startup. If you are using
a word processor, instead of a text editor, for creating this file, then you must save
the file as text only. So why not use an editor, like GNU Emacs, instead. You may
place this file in your Maxima work directory if you have one or any other directory
you choose. However, Maxima must be told to start in this directory. If you are using
Windows, then this can be accomplished setting the “Start in” parameter under the
Properties of the Maxima icon. (You gain access to its Properties by right-clicking
on it.) If Maxima is used under Linux, then the environment variable HOME should
be set to the path of directory containing the file maxima-ini.mac.

Maxima can plot two or more graphs simultaneously. The only modification re-
quired to the plot2d instruction is enclosing the funtions to be plotting in square brack-
ets. Thus if you would like to see the two graphs in Figure 5 on page 138 plotted on the
same axes, then give Maxima the following instruction:

(C7) plot2d([f(x),diff(f(x),x)],[x,1.1,2]);

Points = 162

Points = 346

(D7) 0

10

4
Differentiation Formulas

You may be wondering whether you can get Maxima to show you all the differentiation
rules without giving it specific functions to differentiate. The answer is in the following
dialogue:

(C1) depends(f,x);

(D1) [f(x)]

(C2) depends(g,x);

(D2) [g(x)]

(C3) derivative_of_quotient:diff(f/g,x);

df dg

-- f --

dx dx

(D3) -- - ----

g 2

g

(C4) ratsimp(derivative_of_quotient);

dg df

f -- - -- g

dx dx

(D4) - -----------

2

11

Maxima Guide

g

You see Maxima has the quotient rule memorized in a somewhat different form
than the one whichis optimal for humans. Also note that the command depends(f,x)
tells maxima that f is a function of x. It can then deal with its derivative in a
“symbolic” way. If we had not done this, then instruction diff(f,x) would have evoked
the response 0 from Maxima because it would have thought that f and x are simply
two independent variables.

A variety of instructions control the final form of the answer which Maxima
returns. If we wish the answer to be over a common denominator then the instruction
is factor.

(C5) f(x):= x^(1/2);

1/2

(D5) f(x) := x

(C6) g(x):= 1 + x^2;

2

(D6) g(x) := 1 + x

(C7) answer:diff(f(x)/g(x),x);

3/2

1 2 x

(D7) ------------------ - ---------

2 2 2

2 SQRT(x) (x + 1) (x + 1)

(C8) factor(answer);

2

3 x - 1

(D8) - -------------------

2 2

2 SQRT(x) (x + 1)

12

Section 4
Differentiation Formulas

If you need to access just parts of an answer provided by Maxima, then you can
request that Maxima give you labels with which you can access the individual parts.
The instruction for this is pickapart. For example, if you wish to find where the
derivative in Example 10 is equal to 0, then you need a label with which to access the
numerator. This is achieved with the following. Note that the additional variable 2
tells Maxima to what “depth” to the expression should broken into parts. Obviously,
you want to use the smallest value that gets the desired label.

(C9) pickapart(factor(answer),2);

 2

(E9) 3 x - 1

 2 2

(E10) 2 SQRT(x) (x + 1)

 E9

(D10) - ---

 E10

You see that Maxima has attached labels (E9) and (E10) to the numerator and
denominator of the factored form of the answer. You may wish to see what happens
if the 2 is replaces by 1, 3, etc. Now in order to find the zeros of the numerator you
do as follows:

(C11) solve(E9,x);

1 1

(D11) [x = - -------, x = -------]

SQRT(3) SQRT(3)

Note that the answer (D11) is a list with two elements. (Actually everything in
Maxima is a list because it is written in the computer language LISP.) You can access
the elements which are in the form of equations x =something with the instruction
first and then value of this solution can be retrieved with the instruction rhs

13

Maxima Guide

(C12) first(d11);

1

(D12) x = - -------

SQRT(3)

(C13) value_of_x:rhs(D12);

1

(D13) - -------

SQRT(3)

14

5
Derivatives of Trig Functions

Maxima can be quite helpful in differentiating trig functions. However, a couple
of commands specific to trig functions are required in order to instruct Maxima
to apply trig identities in simplifications. For example consider the following dia-
logue:

(C1) diff(sin(x)/(1 + cos(x)),x);

2

SIN (x) COS(x)

(D1) ------------- + ----------

2 COS(x) + 1

(COS(x) + 1)

(C2) factor(%);

2 2

SIN (x) + COS (x) + COS(x)

(D2) --------------------------

2

(COS(x) + 1)

(C3) trigsimp(%);

2 2

SIN (x) + COS (x) + COS(x)

(D3) --------------------------

15

Maxima Guide

2

COS (x) + 2 COS(x) + 1

You see that the instruction trigsimp was required to get Maxima to make the
obvious simplification using the Pythagorean identity. Also note that Maxima does
not recognize the shortcut of leaving out parentheses when useing trig functions, eg,
sin x, cos x, tan x; neither does it recognize the common abuse of notation that puts
an exponent directly onto the trig function; i.e., sin2(x), tan−1(x) are not recognized;
the correct inputs are sin(x)2, tan(x)−1. Also observe that tan(x)−1 means the recip-
rocal of tangent and not arctangent which is denoted by atan(x). The other Maxima
instruction is trigreduce which allows using the multiple angle formulas to reduce pow-
ers, eg:

(C4) factor(cos(x)^2 + 2*sin(x)^2);

2 2

(D4) 2 SIN (x) + COS (x)

(C5) trigsimp(cos(x)^2 + 2*sin(x)^2);

2 2

(D5) 2 SIN (x) + COS (x)

(C6) trigreduce(cos(x)^2 + 2*sin(x)^2);

COS(2 x) + 1 1 COS(2 x)

(D6) ------------ + 2 (- - --------)

2 2 2

Of course, one could argue that the latter expression is not simpler than the
one we started with. However, it is invaluable for integration, the inverse process of
differentiation.

16

6
The Chain Rule

You get Maxima to show how it applies the chain rule by telling it which variables
are dependent on which.

(C1) f(x):= x^3;

3

(D1) f(x) := x

(C2) depends(x,u)$

(C3) diff(f(x),u);

2 dx

(D3) 3 x --

du

In the above dialogue we used the functional notation to define f and used the
instruction depends to inform Maxima that x is a function of u but did not provide
a specific formula for it. However, we can also specify the dependence of x on u as
follows:

(C4) kill([x,u]);

(D4) DONE

(C5) x: sin(u);

(D5) SIN(u)

(C6) diff(f(x),u);

2

17

Maxima Guide

(D6) 3 COS(u) SIN (u)

Or, we can use functional notation for both functions and get Maxima to differ-
entiate their composition.

(C7) kill(x);

(D7) DONE

(C8) g(x):= sin(x);

(D8) g(x) := SIN(x)

(C9) diff(f(g(u)),u);

2

(D9) 3 COS(u) SIN (u)

Note that the instruction kill was needed to remove the relationships set in each
of the previous dialogues with Maxima. If a variable has multiple dependencies and
only one of them is to be removed, then the instruction remove([u,x],dependency) can
be used.

18

7
Implicit Differentiation; Higher Derivatives

Maxima can easily compute derivatives of implicit functions. Consider the follow-
ing dialog that instructs Maxima to find dy/dx given the equation x2 + y2 = 25.

(C1) eqn: x^2 + y^2 = 25;

2 2

(D1) y + x = 25

(C2) depends(y,x);

(D2) [y(x)]

(C3) deriv_of_eqn:diff(eqn,x);

dy

(D3) 2 y -- + 2 x = 0

dx

(C4) solve(deriv_of_eqn,’diff(y,x));

dy x

(D4) [-- = - -]

dx y

Note the new symbol appearing in the solve instruction above. Normally the
first argument of solve is an equation or list of equations and the second is a variable
and a list of variables. Here we see dy/dx as the second argument. On the other
hand there is also a single quote in front. A single quote in front of a symbol tells
Maxima to attempt to evaluate the symbol but to treat it as an unknown quantity.

19

Maxima Guide

For example,

(C5) a : 3;

(D5) 3

(C6) b : 4;

(D6) 4

(C7) a + b;

(D7) 7

(C8) ’a + b;

(D8) a + 4

(C9) ’a + ’b;

(D9) b + a

(C10) a + ’b;

(D10) b + 3

So we see that the instruction solve(deriv of eqn,’diff(y,x)) tells Maxima not try
to evaluate the derivative of y with respect to x directly (which it really cannot do)
but to regard diff(y,x) as an unknown quantity and solve for it from the differentiated
equation, deriv of eqn.

The Maxima instruction to find higher order derivatives is the same as that
for finding the first derivative except for a third argument indicating the order:

(C11) diff(x^n,x,2);

n - 2

(D11) (n - 1) n x

20

8
Related Rates

Maxima can be helpful in solving related rates problems. For example consider
the problme of finding the rate of change of the area of a circle given that the
rate of rate of change of the radius is dr/dt = 60 when t = 2 and r = 120:

(C1) area: a = %pi*r^2;

2

(D1) a = %PI r

(C2) depends([a,r],t)$

(C3) deriv_of_area: diff(area,t);

da dr

(D3) -- = 2 %PI r --

dt dt

(C4) subst([r=120,diff(r,t)=60],deriv_of_area);

da

(D4) -- = 14400 %PI

dt

Note that the expression %PI is the Maxima’s label for π. You might want to
see how many digits of pi Maxima can find by giving the instruction fpprec= 1000,
bfloat(%PI); Also note that Maxima must be told which variables are time-dependent
with the instruction depends. The instruction subst tells maxima to substitute a list
of equations appearing as the first argument of subst, enclosed in square brackets,

21

Maxima Guide

into the expression appearing as its second arguement.

22

9
Linear Approximations and Differentials

Maxima has a very powerful built-in tool for finding linear approximations to func-
tions called the Taylor expansion of order 1.

(C1) L: Taylor(sin(x),x,%pi/3,1);

%PI

x - ---

SQRT(3) 3

(D1)/T/ ------- + ------- + . . .

2 2

(C2) error1 :float(subst([x=1.1],L)) - float(subst([x=1.1],sin(x)));

(D2) .0012192681247044

(C3) error2 :float(subst([x=1.4],L)) - float(subst([x=1.4],sin(x)));

(D3) .0569768981976797

(C4) plot2d([L,sin(x)],[x,%pi/3-.5,%pi/3+.5]);

In the dialogue above the instruction (C1) tells maxima to approximate sin(x)
by a Taylor polynomial of degree 1, at the point x = π/3 This is simply another
name for a linear approximation. On the other hand, Taylor polynomials come in all
degrees, and you will have an opportunity to work with them in Math 141 or have
a look at the Laboratory Project on page 212. The last argument in the Maxima
instruction Taylor specifies the degree. By comparing error1 and error2 in the
above dialogue you can verify that indeed the linear approximation is much more

23

Maxima Guide

accurate close to the point of tangency than far away. You can also see this from the
graph of the function and its linear approximation produced by Maxima.

You may be wondering about the extra characters /T/ in the output line (D1).
This is only Maxima’s reminder that the formula it has produced has been truncated
and hence cannot be used when great accuracy is needed. If you are really irritated
by the choice Maxima makes for its automatic labelling of input and output you can
enter something like following instructions:

inchar : MY INPUT outchar : MAXIMA OUT

Or, you can put the following line into your maxima-init.mac file. tt(inchar : IN
,outchar : OUT);

24

10
Maximum and Minimum Values

Maxima can be a great help in checking the process of locating critical points of func-
tions as can see from the following dialogue:

(C1) f(x):=x^(3/5)*(4-x);

3/5

(D1) f(x) := x (4 - x)

(C2) deriv_of_f: diff(f(x),x);

3 (4 - x) 3/5

(D2) --------- - x

2/5

5 x

(C3) pickapart(factor(deriv_of_f),2);

(E3) 4 (2 x - 3)

2/5

(E4) 5 x

E3

(D4) - --

E4

(C4) solve([E3=0],x);

3

(D4) [x = -]

25

Maxima Guide

2

Remember that the instruction pickapart labels each of the expressions in order
that you can refer to it in subsequent instructions. If you are not interested in seeing
the intermediate steps, then the instruction solve(diff(f(x),x); would also give you the
answer that x = 3/2 is one a critical number. However, you would still need to supply
the information that the derivative fails to exist at x = 0.

26

11
Using Maxima’s Lambda definition

Maxima can be helpful in seeing that indeed the c of the Mean Value Theorem depends
on the given functions. For example consider the following dialogue which calculates
the c for the functions x2 and x3 on the interval [0, 1]

(C7) f : lambda([x])$

(C8) MVT(f,a,b):=block([deriv, aver, c], aver:(f(b) - f(a))/(b-a),

deriv : diff(f(x),x),

c : solve(deriv=aver,x),

print(c))$

(C9) g : lambda([x],x^2)$

(C10) MVT(g,0,1)$

1

[x = -]

2

(C11) h : lambda([x],x^3)$

(C12) MVT(h,0,1)$

1 1

[x = - -------, x = -------]

SQRT(3) SQRT(3)

So you see that for g Maxima found that c equals 1/2 whereas for h Maxima
found different solution with 1/

√
3 being in the interval [0, 1].

27

Maxima Guide

You also see several new useful instructions. First the declaration involving
lambda tells maxima that g is a function of x given by the formula x2. How is
this different from the declaration g(x) := x2 which we have used before? The new
declaration requests that Maxima recognize the symbol g by itself in the definition
and/or invocation of another function, where as with the old declaration maxima
would not have recognized anything other than g(x).

The other new instructions are block and print in the definition of a function.
The first instructs Maxima to make the variables listed in square brackets local to
the function being defined by the block and the print statement asks Maxima to do
just that with all the current values of the variable or quoted strings that are passed
as arguments to it.

28

12
Maxima helps sketch graphs

Of course Maxima’s plotting ability helps verify graphs which are sketched using
calculus techniques. But Maxima can also help implement these techniques. For
example, Maxima can find on which intervals a derivative (and second derivative) is
positive and on which it is negative. For example, suppose that we are to sketch the
graph of the function 1

3
x3 − 4x = 4. Then we find that its derivative is x2 − 4, which

is zero at x = 2 and x = 1. We can instruct Maxima to evaluate the derivative at
x = −3, x = 0 and x = 3 to find where the derivative is positive and where it is
negative. We may try this:

(C1) expr : x^2- 4$

(C2) subst(-3, x,expr);

(D2) 5

(C3) subst(0, x,expr);

(D3) - 4

(C4) subst(3, x,expr);

(D4) 5

If however, you would want to substitute an algebraic expression for x, eg,
u = x − 2 then Maxima would issue an error message. To inform Maxima that it is
supposed to execute the algebra involved in the substitution, the command ratsubst
needs to be used:

(C5) ratsubst(u, x - 2,expr);

2

29

Maxima Guide

(D5) u + 4 u

30

13
Limits at Infinity and One-sided Limits

Maxima is very helpful in checking limits at infinity. Obviously, it can check the
extensive algebra that may need to be performed. But in addition it can evaluate the
limits directly.

(C1) f: (3*x^2 - x - 2)/(5*x^2 + 4*x +1);

2

3 x - x - 2

(D1) --------------

2

5 x + 4 x + 1

(C2) limit(f,x,inf);

3

(D2) -

5

You see that Maxima recognizes the concept of infinity via the label inf. On
the other hand Maxima does not compute one-sided limits directly. For this purpose
the substitution x = 1/t is very useful as you can see from the following dialogue

computing limx→0−
|x|
x .

(C3) f : abs(x)/x$

(C4) limit(ratsubst(1/t,x,f),t,-inf);

(D4) - 1

31

Maxima Guide

And Maxima knows about infinite limits as well:

(C5) f : 1/x$

(C6) limit(ratsubst(1/t,x,f),t,-inf);

(D6) - INF

32

14
Plotting Inspite of Vertical Asymptotes

Using Maxima to check your sketches of graphs of functions requires a little bit of care.

For example, if you simply instruct Maxima to plot the function f(x) = x2

x2 − 1
by is-

suing the following instruction you get a nearly useless plot.

(C1) plot2d(x^2/(x^2-1),[x,-4,4])$

It does show you the vertical asymptotes; so it is not a complete waste. The problem
Maxima encounters is a lack of information about what you want to do with the
function values that are too large or too negative to fit on any computer screen. You
can instruct Maxima to discard values greater than 10 or less than -10 as indicated
in the following dialogue:

(C2) plot2d(max(min(x^2/(x^2-1),10),-10),[x,-4,4])$

Of course the nearly vertical lines are to be interpreted as vertical asymptotes and
not portions of the graph.

From this illustration you see that even the most advanced technology cannot
replace a human being with good mathematical skills. Although Maxima can help
check your execution of the eight steps in sketching the graph of a function, it cannot
execute them without your input; it is especially important that you executed Step A
and form some understanding of the range of the function and the interval on which
you wish to view the graph. However, Maxima can be enormously helpful in checking
the accuracy of your work in steps B through H.

33

15
Optimization; Computing Derivatives of Functions

Subject to Constraint

Let us illustrate the use of Maxima to solve the following. A window is in the form
of a rectangle surmounted by a semicircle. The rectangle is of clear glass while the
semicircle is of tinted glass that transmits only half as much light per unit area as
clear glass does. The total perimeter is fixed. Find the proportions of the window
that will admit the most light. Neglect the thickness of the frame.

Let r be the radius of the semicircle. Then 2r is the base of the rectangle.
Denote the height of the rectangle by h. Let P be the total perimeter of the window.
Then P is a fixed constant. We have the following equations connecting r and h and
expressing the amount of light L in terms of r and h, assuming that L is one for
each unit of area in the rectangular part and L is 1/2 for each unit of area in the
semicircular part of the window:

P = 2r + 2h + πr L = 2rh +
πr2

4

(C1) Eqn: P = 2*r +2*h + %pi*r$

(C2) L : 2*r*h + %pi*r^2/4$

(C3) Soln_h : solve(Eqn,h);

(%PI + 2) r - P

(D3) [h = - ---------------]

2

(C4) h_is : rhs(first(Soln_h));

(%PI + 2) r - P

35

Maxima Guide

(D4) - ---------------

2

(C5) L_fcn_r : ratsubst(h_is,h,L);

2

(3 %PI + 8) r - 4 P r

(D5) - ----------------------

4

(C6) deriv_L :diff(L_fcn_r,r);

2 (3 %PI + 8) r - 4 P

(D6) - ---------------------

4

(C7) Soln_r:solve(deriv_L = 0,r);

2 P

(D7) [r = ---------]

3 %PI + 8

Since this is the only critical point found for L on the interval [0, P (π+2)−1] this must
give the absolute maximum for L. Maxima can now be instructed to find the ratio of r
to h:

(C8) r_is : rhs(first(Soln_r));

2 P

(D8) ---------

3 %PI + 8

(C9) h_is_now : ratsubst(r_is,r,h_is);

(%PI + 4) P

(D9) -----------

6 %PI + 16

(C10) Ratio_finally :ratsimp(r_is/h_is_now);

4

36

Section 15
Optimization; Computing Derivatives of Functions Subject to Constraint

(D10) -------

%PI + 4

A somewhat different approach to solving problems in this section is to differen-
tiate the constraint equation. This is significantly simpler than solving the constraint
equation for one of the variables in case where the constraint equation is complicated
or perhaps not even solveable for either of the variables. So in the above problem one
would differentiate the equation for the perimeter with respect to r. This would yield

a linear equation in the unknown derivative dh
dr

which can easily be solved. Then one
would differentiate the formula for L with respect to r and this would also involve the

unknown derivative dh
dr

which now can be eliminated. And then one could determine
the relationship between r and h that yields a critical point. The following dialogue
indicates how Maxima can be instructed to carry out this computation.

(C1) Eqn: P = 2*r +2*h + %pi*r$

(C2) depends(h,r);

(D2) [h(r)]

(C3) L : 2*r*h + %pi*r^2/4$

(C4) Deriv_eqn: diff(Eqn,r);

dh

(D4) 0 = 2 -- + %PI + 2

dr

(C5) Deriv_h:rhs(first(solve(Deriv_eqn,’diff(h,r))));

%PI + 2

(D5) - -------

2

(C6) Deriv_L : diff(L,r);

dh %PI r

(D6) 2 -- r + ----- + 2 h

dr 2

(C7) Deriv_L_is : ratsubst(Deriv_h,’diff(h,r),Deriv_L);

(%PI + 4) r - 4 h

37

Maxima Guide

(D7) - -----------------

2

(C8) solve(Deriv_L_is=0,r);

4 h

(D8) [r = -------]

%PI + 4

Note that ’diff(h,r) must be used instead of ’diff(h,r) in the above dialogue because
Maxima must be instructed to treat it as an unknown quantity.

38

16
Newton’s Method; Loading Library Programs;

Recursive Functions; Initial Conditions

Newton’s method can be implemented very easily in Maxima. Actually, there is
a Maxima library function which has to be loaded and then all one has to do is
give an initial guess. For example the following finds the root of x2 − 2 closest to
1.5:

(C7) load(NEWTON)$

(C8) f: x^2 - 2$

(C9) NEWTON(f,1.5);

Warning: Float to bigfloat conversion of 1.5

(D9) 1.41421356237469B0

The command NEWTON is not built into Maxima and must be loaded from the
library. Of course, if you wish you can automatically load it each time it is started
by placing load(NEWTON); in your maxima-init.mac file. Observe that although
Maxima is not case sensitive when it comes to its own commands, it is case sensitive
with user labeled and NEWTON is regraded as one of the latter. Note that NEWTON
converts Maxima’s output to bigfloat which can be given arbitrary precision. Thus
setting fpprec :100; would give you square root of 2 to 100 significant digits. Also,
the warning about converting float to bigfloat is inocuous. However, it can be avoided
by passing 1.5b0 instead of 1.5 to NEWTON.

It may be good practice to define your own Maxima function which implements
Newton’s method.

This definition of my newt is recursive; i.e. the definition of the function calls the
function itself until the desire precision is attained. From the viewpoint of program

39

Maxima Guide

clarity this is the method of choice. When calling my newt lambda definition of
function must be used here because the name of a function f is being passed to
my newt.

Maxima is very helpful in checking your work on checking antiderivatives that
are subject to an initial condition. For example, let us find the antiderivative v of
a = 6t + 4 subject to the initial condition v(0) = 9

(C6) kill(all);

(D0) DONE

(C1) a: 6*t+4;

(D1) 6 t + 4

(C2) v: integrate(a,t);

2

(D2) 3 t + 4 t

(C3) c_val:solve(subst(0,t,v+c)=-6,c);

(D3) [c = - 6]

(C4) v: v+rhs(first(c_val));

2

(D4) 3 t + 4 t - 6

(C5) s: integrate(v,t);

3 2

(D5) t + 2 t - 6 t

(C6) c_val:solve(subst(0,t,s+c)=9,c);

(D6) [c = 9]

(C7) s+rhs(first(c_val));

3 2

(D7) t + 2 t - 6 t + 9

You see that Maxima chronically omits the constant of integration when it per-
forms the instruction integrate; so it is up to the user to provide it.

40

17
Limits of Riemann sums; The Definite Integral

The actual evaluation of the limit of the Riemann sums associated to a function on
an interval [a, b] is absolutely tedious. So we are very pleased that Maxima can help.
Maxima’s instruction for summing a series is sum and it takes four arguments: the
expression, the index, the beginning value of the index, and the ending value of the
index. Maxima’s default is not to carry out the evaluation of the sum of a series. And
the instruction to change this is: simpsum : true$ The Maxima dialogue for doing is
as follows:

(C1) R_sum: (3/n)*sum((2+3*i/n)^4,i,1,n);

n

====

\ 3 i 4

3 > (--- + 2)

/ n

====

i = 1

(D1) ------------------

n

(C2) simpsum:true$

(C3) R_sum: ratsimp((3/n)*sum((2+3*i/n)^4,i,1,n));

4 3 2

6186 n + 9135 n + 3510 n - 81

41

Maxima Guide

(D3) --------------------------------

4

10 n

(C4) limit(R_sum,n,\inf);

3093

(D4) ----

5

\newpage

(C5) integrate(x^4,x,2,5);

3093

(D5) ----

5

The formulas 5 and 6 given on page 329 do not need to be memorized. However,
you do need to know all the others on that page.You also need to know all the
properties of integrals listed on pages 333 to 325. If you think about their meanings
in terms of simple geometric properties of areas, then they are all extremely simple.
The purpose of the figures on these pages is to help you think in this way.

42

18
Fundamental Theorem of Calculus

You may be curious whether Maxima knows the Fundamental Theorem. The follow-
ing dialogue provides the answer.

(C1) S: lambda([x], integrate(cos(t),t,0,x));

(D1) LAMBDA([x], INTEGRATE(COS(t), t, 0, x))

(C2) diff(S(x),x);

((MTEXT) Is $x positive, negative, or zero?)

positive;

(D2) COS(x)

(C3) diff(S(x^3),x);

((MTEXT) Is $x positive, negative, or zero?)

positive;

2 3

(D3) 3 x COS(x)

Note that for Maxima’s sake it is essential to use a different name for the in-
tegration variable than for the variable of the function S. When Maxima executes
these steps it requires knowledge of the sign of x and it asks for the user’s input. The
correct response is positive;. The semicolon and a press of the enter key are needed
to indicate the end of the response.

43

19
Indefinite Integrals; Using ode2

The Maxima instruction integrate serves two purposes; which one depends on the
number of arguments it the instruction is passed. It is used for telling Maxima to
find either the indefinite or definite integral. So, how does Maxima know which
to find? By the number of arguments; with two arguments, the expression and its
variable its the indefinite integral but if the lower and upper limits are also passed to
the instruction, then it is the definite integral that Maxima is being asked to find.

Another instruction that can be used to achieve the same purpose is �ode2. It

can be used to instruct Maxima to solve the equation
dy
dx

= f(x), for y. This is a
very powerful instruction but in this case using a sledge hammer to drive a tack does
no harm. The following indicates how this is done.

(C3) kill(all)$

(C1) eq: ’diff(y,x) = sqrt(1/x^4-1/x^5);

dy 1 1

(D1) -- = SQRT(-- - --)

dx 4 5

x x

(C2) ode2(eq,y,x);

x - 1 3/2

2 (-----)

x

(D2) y = ------------ + %C

45

Maxima Guide

3

Whenever, Maxima is handed an expression it automatically tries to evaluate it. So
remember that the quote mark before the diff is necessary to tell Maxima not to

waste time trying to evaluate
dy
dx

because that is not the issue Maxima will be asked
to work on here. Maxima is being told what this derivative is and the next instruction
will ask it to solve for y.

Note that when you use ode2 Maxima includes the arbitrary constant %C in
its respnose.

If you were to try to solve this problem “by hand”, you would first need to factor
x−2 out of the square root and then make the substitution u = 1− x−1.

46

20
Areas between Curves, Finding Intersections

Maxima can be very helpful in finding the points of intersection of curves. The follow-
ing dialogue demonstrates how:

(C1) eq1 : y = x - 1$

(C2) eq2 : y^2 = 2*x + 6$

(C3) solve([eq1,eq2],[x,y]);

(D3) [[x = - 1, y = - 2], [x = 5, y = 4]]

Note that Maxima does not integrate absolute value. Thus to get Maxima to do a
problem where neither graph remains above the other on the entire interval, you first
need to find the points of intersection and then instruct Maxima to sum the integrals
of the upper function minus the lower function over the intervals between.

47

21
Volumes by slicing; Using Trigsimp

Maxima cannot help with finding the formula for the area of the cross-section of a
typical slice A(x) but it is certainly capable of checking the ensuing integration.

For example, finding the volume generated by revolving the area below y =
sec(x), above y = 1 and between x = 1 and x = −1 requires evaluating V =∫ 1

−1
sec2(x)− 12 dx

(C1) A : (sec(x))^2 - 1$

(C2) B : trigsimp(A);

2

COS (x) - 1

(D2) - -----------

2

COS (x)

(C3) integrate(B,x,-1,1);

(D3) 2 TAN(1) - 2

Of course, Maxima could have found the integral without issuing the instruction
trigsimp. This instruction causes Maxima to use the Pythagorean identities to sim-
plify an expression. An instruction like ratsimp would have no effect here.

49

22
Volumes by Cylindrical Shells; Using Trigreduce

and Trigexpand

Let find the volume of the solid generated by revolving the region between y = cos x,
y = 0 and the lines x = 0, x = π/2 about the x-axis. Using the shell method, the
integral to be calculated is

2π

∫ 1

0

y cos−1 y dy

which is another difficult integral requiring integration by-parts. However, the disk
method yields an integral which can easily be found:

π

∫ π/2

0

cos2 x dx =
π

2

∫ π/2

0

1 + cos 2x dx =
π

2

[
x +

1

2
sin 2x

]π/2

0

=
π2

4

If you forget some of the double/half angle formulas, then you ask Maxima to
remind you;

halfangles: true;

(C1) A : cos(x)^2$

(C2) B: trigreduce(A);

COS(2 x) + 1

(D2) ------------

2

(C3) C: trigexpand(B);

2 2

- SIN (x) + COS (x) + 1

51

Maxima Guide

(D3) -----------------------

2

From this dialogue you see that trigreduce tells Maxima to use the half-angle formulas
to simplify an expression and trigexpand tells Maxima to use the double-angle for-
mulas. Note that the commonly accepted mathematical abuse of notation of using
cos2(x) to stand for cos(x)2 is not recognized by Maxima.

52

