next up previous contents
suivant: Calcul matriciel monter: introduction précédent: Algèbre   Table des matières

Calcul différentiel

Maxima calcule dérivées et intégrales, effectue des développements en série de Taylor, trouve les limites, et sait résoudre en valeur exacte les équations différentielles ordinaires. Nous commençons par définir la fonction $ f$ de la variable numérique $ x$ par :

maxima] f : x^3*%e^(k*x)*sin(a*x);

$\text{\texttt{{\red (D9) {\black }}}} x^3 e^{k x} \sin \left( a x
\right)$

On calcule l'expression de la dérivée de $ f$ par rapport à $ x$ :

maxima] diff(f,x);

$\text{\texttt{{\red (D10) {\black }}}} k x^3 e^{k x} \sin \left( a
x \right) + 3 x^2 e^{k x} \sin \left( a x \right) + a x^3 e^{k x} \cos \left(
a x \right)$

Maintenant, on calcule une primitive de $ f$ par rapport à $ x$ :

maxima] integrate(f,x);

$ {\footnotesize\text{\texttt{{\red (D11) {\black }}}} \frac{\left(
\left( k^7 +...
...^{k x} \cos \left( a x
\right)}{k^8 + 4 a^2 k^6 + 6 a^4 k^4 + 4 a^6 k^2 + a^8}}$

Un léger changement de syntaxe fournit l'intégrale définie :

maxima] integrate(1/x^2,x,1,inf);

$\text{\texttt{{\red (D12) {\black }}}} 1$

(C13) integrate(1/x,x,0,inf);

Integral is divergent

- an error. Quitting. To debug this try DEBUGMODE(TRUE);)

Ensuite, nous définissons la fonction $ g$ à l'aide de la fonction $ f$ et du sinus hyperbolique, puis nous trouvons le développement en série de Taylor de $ g$ à l'ordre 3 au voisinage de $ x = 0$.

maxima] g:f/sinh(k*x)^4;

$\text{\texttt{{\red (D14) {\black }}}} \frac{x^3 e^{k x} \sin
\left( a x \right)}{\sinh^4 \left( k x \right)}$

(C15) taylor(g,x,0,3);

$\text{\texttt{{\red (D15) {\black }}}} \frac{a}{k^4} + \frac{a
x}{k^3} - \frac{...
...3 \right) x^2}{6 k^4} - \frac{\left( 3 a k^2
+ a^3 \right) x^3}{6 k^3} + \cdots$

La limite de $ g$ quand $ x$ tend vers 0 se calcule par l'instruction suivante :

maxima] limit(g,x,0);

$\text{\texttt{{\red (D16) {\black }}}} \frac{a}{k^4}$

Maxima peut aussi représenter des dérivées sous une forme non évaluée. On remarquera le signe quotte (') devant l'expression :

maxima] 'diff(y,x);

$\text{\texttt{{\red (D17) {\black }}}} \frac{d}{d x} y$

L'opérateur quotte (') dans l'expression précédente signifie " ne pas évaluer ". Sans ce symbole, Maxima aurait retourné 0 :

maxima] diff(y,x);

$\text{\texttt{{\red (D18) {\black }}}} 0$

En utilisant ce symbole quotte ('), on peut écrire des équations différentielles :

maxima] 'diff(y,x,2)+'diff(y,x)+y;

$\text{\texttt{{\red (D19) {\black }}}} \frac{d^2}{d x^2} y +
\frac{d}{d x} y + y$

La fonction ODE2 de Maxima peut résoudre des équations différentielles du premier et second ordre :

maxima] ode2(D19,y,x);

$\text{\texttt{{\red (D20) {\black }}}} y = e^{- \frac{x}{2}}
\left( \mathrm{\%...
...}{2} \right) + \mathrm{\% K
2} \cos \left( \frac{\sqrt{3} x}{2} \right) \right)$

%K1 et %K2 désignent des constantes réelles.


next up previous contents
suivant: Calcul matriciel monter: introduction précédent: Algèbre   Table des matières
Michel 2002-05-01